28 Minesweeper Variants - Combination Block

 made on 6/17/24

The following puzzles explore rulesets that combine the variants in 14MV and 14MV2.


[A][2A]6x6-12

[B][2B]6x6-12
[C][2C]6x6-12
[D][2D]6x6-12
[E][2E]6x6-12


And finally, my new largest puzzle:

https://swaroopg92.github.io/penpa-edit/#m=solve&p=7Vt9iyPH8f7/PsUgCCRkYjQzPW8LS9j33w/s89vFjhGL0e3qboX3VhdJe2fvYf+dz5CPl0/ip+qpkap71uAQQkxYCY2qHk13V1VXVVfPaDZ/u5+vF3lT5VWZV10+zQu8ywCuKOuQ133f8DC194vl9nZxkJVd9snybrF5v1i8Xayzr+br5fxuu8n+lJ2s3rxc3s23y9Vddny7uvou+/27xXojbPmH/Oh+e7NaH2Q399vt8Mnzs/nVTbZ6lW1vFlkRsrv7Ny8X68V19nq9vN5k95vFJptn18tXr4DebbN3HC17tV69kfMflWR+d/2vNyp/V55k8022vLteXs23EOHlDyrV7er18iqbL68z6CHAevn6ZvtRdgbdfsje3j883C6yG7ScZ2/QcXa1usdYUKksssX3V4u3GHi1zmanlyrYrLy4lKHe3yyh+c383cI122i76Uf5p+fn+av57WbxbGbmv3w2mxSTfFLiU0wuf3p4/pMC5eWzDw9fHHx4+PZgdvlj/vCXPdntyS8PPkzKaTU56NDDNEwOKvmujW+Mb43vjO/JF4V9l8QL66ewfgrrp7B+CuunnZJvrX1r7Vtr31r71tq31r618Vsbv7N+Ouuns34666djP1XFcauK7auK7avA9lVg+yqwfRXYvgocvwocvwrWT7B+gvVTWz81+wlmx2B2DGbHYHYMZsdgdgwF2wezYzA7BrNjMDsGs2MwO4bC+jE7BrNjMDsGs2MwOwazY2itvdkxmB2D2TGYHYPZMZgdQ8d+arNjbXaszY612bE2O9ZmxzqwfW12rM2OtdmxNjvWZsfa7FjX7KcxOzZmx8bs2JgdG7NjY3ZszC8bs2NjdmzMjo3ZsTE7NmbHppB+EBTPERSFKKeB1Ghc4SBizyTOdkiNDmeTyiENhpxNwh7RoJpNpuiogAkJaTPMtoO076mHxBtmkz8rwq5EbhVpj2gzj5SwQdyqhHYq9g6ReZlNLjyiQn7hEZXx/z2io586hOp/5RE958gjKqHvuVZ5fM+1mtq3alSL5x7BnM4mLzyi9vF6SX6IEfFsnaA9ov1E56Q2rMQPonMqWjVC0n6qMpWnKtXOEaJ2jhC1YYSoDSNkcLw9kmpalSOZq5HM1UjmaiSzxDIckSZTR9S0BsidxIn3zTjNCMA9xPlxtq+aUbNGmzlvrSSHxbMh2SxuJXkt7lkynIbdHlEr1h7RsRqPqBVbj6gVO4fQg3qPqDkiVSVhAvJSS+7cxbhBKjaSkoOYCbzgnQr+fx5RwV24Vp0K/qVHVPATh/Qq+LlHVPBjj6jcLqiqXsX+q0dUahf2Va9Cf+YRlfnMIyrzJx5RmV2QV73K/PEe0YURU805UucLFkPO2oFu7JwmVGlYBVmiZpPPHSKLZNyKDuERTm2EpK6mi2ByDlcKLyJNjXVlB9VM+m6GdPmE1C7n17vlY3cSI8T5aM0IcZOm62K8eOjSGEmpi2RykqyTKZRq1zCxONdumDScbo0UWNFC0FC3Tx3CEEVADitjwxDBZO8Qmg3K7pEhIAek5Xrq/Kil+s5DW6Zi58WtlCSRYVspLiK9Wi46/hz6jFu8WiYjF3kdV26XaDra0HljN1pQOqZ034pe7Sa6q9LE19Gr3dLZMV27mO5oZzc7PT3PWaynzC46eymdIov1dI4ISa3aS4GVIDo7EaKjR4jOV4SoPBGimkaI2tAjXJQjZCSzlJiRP/dczdws97XK7M9hiLnyo+eS43JVMUXcxIMBSkcrpjRsDKWFXTFluLiYLqZSTM8mX3uI2SEasUntVExt5YmgtMQppkz9zgELdJaehZaJIQq80hGLkWMAGolajFwDUOobgFLnAJR6B6CR2sXIPyBW6iCAxtKPkgWEHzeUvUkUjIBUCOdJkFS7d8sFoJGO5dhzdCutZcZuJ1FSIVlW9hjThhQae6za7Sb2GNOdW6KLshkZtmxGJrMSmr6pK0Khu+hYzZL1h/fgkqnblRuAVAiXdwCpW7hFEJB272oHQKqRS+iA0rUakErvoQq7rLhSBZRWuIDS/AxI+/JCVNXIXnp9YLAEjWOFZ9QXK09XwBWBs2uVH1vqJj/FWPq7Sq+w0sYHZaAYfsww2tEVuomPZ3JcugAa2dXKGe/DgRMSncWSz49oFY4XtaZdvag1E6JbQbGLHlm/5lrs1jVA6TIGaOQCNSfElSKA0g0VIFXb+6EVQ1bD02BWDaEEdRit78VoaH0/QMMNtQ+HhpcPvEM1XJ1iaBSTDVNPDI3SWMN6JoZGSbjhWhdDowTVcBsfQ2Ppmf8iiGuPd7qG+xk/R804fTTcrcTQKDE03EP4aWvpYa5EQw4epeqWk+vdqeV0SPzt0mZLU8h2bI9x0S0hh2BTgszzJeoBD6qmrjoDlO7cAakOfqnvuDL6szquUz7pdqOrCYC0+6NDZrzGQB3gOAG5P4xBLnOnCagjnyWgOtd5AjLpxCBjwYdHx1iIBOfVJe863TgWunEsdONY6Max0I1joRvHQjeOhW4cC904FrpxLHTjWOiY1SJodIGq6Li6+iWrY06OzuLq6qu1juFxdMiEZdZnoj5OQNXgJAF1kNMEVPnOElD1OI/AfqrzcBGDDDxfLdouwuti2wi/uvecHO/tPa0XQbwEeHTI3mxMXmU6TkCWGQnICxkJqAY7S0A12HkC8ipMDDK+fTD34znueVXJVWOl7QHchAIaXb2cMuT95SFgvI5yyEVJ5QCoIxzHIMP7JAHViKcJqNKcJaAOfp6AasSLGBwFOKC0LgKUXiTC/aT0EiEgtWgEsWiMIdYCh7SMiUE/P05ArvQJqDY8TUBWIRGILR2NEINqw4sY5Ix6jW0T5LbZuCOW1kiAdFx3XRLX+VljHNI/bAA69XECqulPEpD1cwLS/Amo1jlPQLXORQzShyP1eGnUX7bXO4BQ74///Ps/7HoYm5f0ZO/IJa98+2kt6cZHhzSGNaUbHyegTsFJAjKzJKCOfJaALM8SUAW6iEF6rde7ZOWwuxaAG0bFwQccv9HjuR5LPb7ATdb8odLjqR6neqz1+LGecyZ3YGvcTscODaKWcmcDN99xMxR6CwcCnPixcn2bl51Mu3AgcmyqYAzhQIAT51au7/JqKr4AToi8KsRCwoEAJx6vXN/jZr84iHAg8govcnjluClAWYQAJ16jXNPmVS22FA5EXjUSG8KBACeupFwDWVoxsHBtIZzsb8lh9Fb26sqVGKGV8occetHLeeQgdSuuRA6StXJHhRxGb8WnyEHbVrZT5KBRK8USOUjdSholJ7KI45ETWczyQgg3yALr4jDIIhZsByuBEG6QRSwxaIstNWZTCxedsRqzqRe8dI4KzGYvNYByHdpNpZ7RGasxnl7p0DkSm6GoMK6DfqWUOTpjNWTRu1Y6Y2JPvY2gXAfdgyywOmM15KwHW4MAJxlXuQ520Q2Czhj+6rGbB+rQDnKCEG6nXy0cxxNCuMFb0ScO5pEghKOc8ORS/Np8HoRwwwi9jCBZnpyMIOmdnIywjwf4PLoaOI2VndS9cGZ5bK0QY8M8gBDOzgQhnPUCQrghGmEzHEwysQsOJhkI4UwyEMKZZCCEM91BCGe6g5B4H2RpRBYpb8iJLLIEkBNZoszQDNEPQrhBFkQ4DoMsiGIcBlkQqTgMsiAacRhkaUQW+U+Gcq3IIvsbciKLXA4lJ7LIJXByIotcGCUnssjum5zIIhsiciKL1EoaAQVG6KQwVG6K0QENHCQDNHCS6+QaJDn0opfbyWEEQAOH0QENnESc3CggB6kBDRw0AjRwIovlLLiKyGK5Dpx4q+VI5l1Ag2dJL7Jl0V4CztQL3YxpSNZLacOYRmxOZSejMQ0fRChbbIKQmLbYBCExbbEJQmLaYhOExLTFJgiJacsTIBDFQ54AITFteQKExLTlCfHrNO8OeULiFrcjTRYQOe4OmiwgwA15AkSOv7ZQFiFy/HGFsggBzuJdiDzovwSEA5HjX2SURQhwlguEyEOwOBIiD7XleSHAWRQLkYchxmx9sPGEEB1MdxCig+kOQnQw3UGIDjYeCNHBxgMBbhgPhOjA8YQQHUx3EOAs2wghOpjuIEQH0x2E6GC6gxAdhviTiGvlFhpXe/V5m+lS5tblecwDoMG60GEvp9gaEDgUFV9raXGix6DH5mCGmmN2ibqjlb9+PXs2QzWv/+0b3viD36/k6oj79e+43dN4j3NPo/7WRkVMPpnqadSnUZ8C7787av/U9f9A1yjqnmz21PVvtWs8UYJnRyab1e23m/v1q/nVYnKgz5zkivFRnAi6Xa3e3uJhlQhcvr5brReP/iTg4vr1Y+e/XK2vk97fz29vI4CPKEXQ1XJ9dRtD2/Uy4ufr9ep9hLyZb28i4OV8i0eZNjfLt3FPeFgoFmA7j0Wcf4fHheK+9zr/+Gzy/UQ/M9lwVfJgTn/wcJQ/XPBewPDsTv7wOZ7M+eTg4bk8mDObTPJOLxPb8zxyrXhHfq2/C3ViNxSmoJ8bDfIbkLTKt3KpGshnB7OHF/lExjnW1kJO3qzeQVDKIfyVPKwlgDMGf9ncX6++ux/uX8h176NEXBnFxK324gpJcYV6RFzR4j8sbn/5I6dh+mufitKnUB4+HR4HeeS/feO/Njxy7+TfvzvwS9v53U7+ewvW1frReAX8SMgCfTQ0DR9FJ/BRHMqA41AE+kg0Ak0DEtA4JgGOwhLYL0Sm9JoGp0iVxqcMNQpRGcpHKbKeUj8D

Comments